QUADRATIC EQUATION

 Question 1:

If αβ but α2=5α3 and β2=5β3 then the equation whose roots are α/β and β/α is

[1] 3x225x+3=0

[2] x2+5x3=0

[3] x25x+3=0

[4] 3x219x+3=0

Answer & Solution
Option # 4

We need the equation whose roots are αβ and βα which are reciprocal of each other, which means product of roots is αββα=1. In our choice (a) and (d) have product of roots 1, so choices (b) and (d) are out of court. In the problem choice, None of these is not given. If out of four choices only one  of choice satisfies that product of root is 1 then you select that choice for correct answer.

Now for proper choice we proceed as,αβ, but α2=5α3 and β2=5β3

changing α,β by x

Therefore, α,β are roots of x25x+3=0

α+β=5,αβ=3

now, S=αβ+βα=α2+β2αβ=193 and product

αββα=1

Therefore Required equation,

x2( sum of roots )x+ product of roots =0

x2193x+1=0

3x219x+3=0 is correct answer.


Question 2:
Difference between the corresponding roots of x2+ax+b=0 and x2+bx+a=0 is same and ab, then

[1] a+b+4=0

[2] a+b4=0

[3] ab4=0

[4] ab+4=0

Answer & Solution
Option # 1

Let α,β are roots of x2+bx+a=0

Therefore α+β=b and αβ=a

again let γ,δ are roots of x2+ax+b=0

Therefore γ+δ=a and γδ=b

Now given

αβ=γδ

(αβ)2=(γδ)2

(α+β)24αβ=(γ+δ)24γδ

b24a=a24b

b2a2=4(ba)

(ba)(b+a+4)=0

b+a+4=0 as (ab)


Question 3:
If p and q are the roots of the equation x2+px+q=0, then

[1] p=1,q=2

[2] p=0,q=1

[3] p=2,q=0

[4] p=2,q=1

Answer & Solution
Option # 1

Given S=p+q=p and product pq=q

q(p1)=0

q=0,p=1

Now If q=0 then p=0p=q

If p=1, then p+q=p

q=2p

q=2(1)

q=2

p=1 and q=2


Question 4:
If a , b , c are distinct positive real numbers and a2+b2+c2=1 then ab+bc+ca is

[1] less than 1

[2] equal to 1

[3] greater than 1

[4] any real no

Answer & Solution
Option # 1

In such type of problem if sum of the squares of number is known and we needed product of numbers taken two at a time or needed range of the product of numbers taken two at a time. We start square of the sum of the numbers like

(a+b+c)2=a2+b2+c2+2(ab+bc+ca)

2(ab+bc+ca)=(a+b+c)2(a2+b2+c2)

ab+bc+ca=(a+b+c)212<1


Question 5:
The value of a for which one root of the quadratic equation (a25a+3)x2+(3a1)x+2=0 is twice as large as the other is

[1] -2/3

[2] 1/3

[3] -1/3

[4] 2/3

Answer & Solution
Option # 4

Let α,2α are roots of the given equation therefore sum of the roots

α+2α=3α=13aa25a+3(1)

and product of roots

α(2α)=2α2=2a25a+3(2)

By (i) and (ii) we have

9α22α2=(13a)2(a25a+3)2×a25a+32

9(a25a+3)=(13a)2

a=23


Question 6:
If the sum of the roots of the quadratic equation ax2+bx+c=0 is equal to the sum of the squares of their reciprocals, then ac,ba and cb are in

[1] geometric progression

[2] harmonic progression

[3] arithmetic-geometric progression

[4] arithmetic progression

Answer & Solution
Option # 2

Given α+β

=1α2+1β2=(α+β)22αβα2β2

2a2c=bc2+ab2

2ab=ca+bc

ca,ab,bcA.P

 reciprocals are in H.P


Question 7:
The number of real solutions of the equation x23|x|+2=0 is

[1] 4

[2] 1

[3] 3

[4] 2

Answer & Solution
Option # 1

Given x23|x|+2=0

If x0 i.e. |x|=x

Therefore,  the given equation can be written as

x23x+2=0

(x1)(x2)=0

x=1,2

Similarly for x<0,x23|x|+2=0

x2+3x+2=0

x=1,2

Hence 1,1,2,2 are four solutions of the given equation.


Question 8:
Let two numbers have arithmetic mean 9 and geometric mean 4 . Then these numbers are the roots of the quadratic equation

[1] x2+18x16=0

[2] x218x+16=0

[3] x2+18x+16=0

[4] x218x16=0

Answer & Solution
Option # 2

Let the two number be α,β

Therefore, α+β2=9 and αβ=4

Therefore,  Required equation

x22( Average value of α,β)x+GM2=0

x22(9)x+16=0


Question 9:
If (1p) is a root of quadratic equation x2+px+(1p)=0 then its roots are

[1] 0, -1

[2] -1, 1

[3] 0, 1

[4] -1, 2

Answer & Solution
Option # 1

1p is root of x2+px+1p=0

(1p)2+p(1p)+(1p)=0

(1p)[1p+p+1]=0

p=1

Given equation becomes x2+x=0

x=0,1


Question 10:
If one root of the equation x2+px+12=0 is 4 while the equation x2+px+q=0 has equal roots, then the value of q is

[1] 3

[2] 12

[3] 49/4

[4] 4

Answer & Solution
Option # 3

 As x2+px+q=0 has equal roots :p2=4q

and one root of x2+px+12=0 is 4

16+4p+12=0

OR p=7

p2=4qq=494


Question 11:
If the roots of the equation x2bx+c=0 be two consecutive integers, then b24c equals

[1] 3

[2] -2

[3] 1

[4] 2

Answer & Solution
Option # 1

Let α,α+1 are consecutive integer

Therefore, (x+α)(x+α+1)=x2bx+c comparing both sides we get b=2α+1

c=α2+α

b24c=(2α+1)24(α2+α)=1


Question 12:
If both the roots of the quadratic equation x22kx+k2+k5=0 are less than 5 then k lies in the interval

[1] (6,)

[2] (5,6]

[3] [ 4,5 ]

[4] (,4)

Answer & Solution
Option # 4

Given x22kx+k2+k5=0

Roots are less than 5D0

(2k)24(k2+k5)k5(A)

Again f(5)>0

2510k+k2+k5>0

k29k+20>0(k4)(k5)>0

k<4k>5(B)

Also  sum of roots 2<5k<5(C)

from (A),(B),(C) we have

k(,4) as the choice gives number k<5


Question 13:
If the equation anxn+an1xn1++a1x=0 a10,n2, has a positive root x=α , then the equation nanxn1+(n1)an1xn2++a1=0 has a positive root, which is

[1] smaller than α

[2] greater than α

[3] equal to α

[4] greater than or equal to α

Answer & Solution
Option # 1

If possible say

f(x)=a0xn+a1xn1++anx

therefore f ( 0 ) = 0

Now f(α)=0 ( therefore x = α is root of given equation )

Therefore, f(x)=nanxn1+(n1)an1xn2++a1=0

has at least one root in ]0,α[

nanxn1+(n1)an1xn2++a1=0

has a +root smaller than α.


Question 14:
All the values of m for which both roots of the equation x22mx+m21=0 are greater than - 2 but less than 4 , lie in the interval

[1] 2<m<0

[2] m>3

[3] 1<m<3

[4] 1<m<4

Answer & Solution
Option # 3

Let α,β are roots of the equation (x22mx+m2)=1

x=m±1=m+1,m1

Now 2<m+1<4(1)

and 2<m1<4(2)

{3<m<3(A) and 1<m<5(B)

By (A) and (B) we get 1<m<3 as shown by the number line.


Question 15:
If the difference between the roots of the equation x2+ax+1=0 is less than 5,  then the set of possible values of a is

[1] (3,)

[2] (,3)

[3] (3,3)

[4] (3,)

Answer & Solution
Option # 3

x2+ax+1=0

Let roots be α and β, then α+β=a and αβ=1

|αβ|=(α+β)24αβ,|αβ|=a24

since, |αβ|<5a24<5

a24<5a2<93<a<3


Question 16:
The quadratic equations x26x+a=0 and x2cx+6=0 have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3 . Then the common root is

[1] 2

[2] 1

[3] 4

[4] 3

Answer & Solution
Option # 1

Let α and 4β be the root of

x26x+a=0

and α and 3β be those of the equation

x2cx+6=0

From the relation between roots and coefficients

α+4β=6 and 4αβ=a

α+3β=c and 3αβ=6

we obtain αβ=2 giving a=8

The first equation is x26x+8=0x=2,4

For α=4,4β=23β=3/2 (not an integer)

So the common root is 

Comments

Popular posts from this blog

APTITUDE MCQ LIST

সাধারণ জ্ঞান MCQ LIST