PROGRESSION

 Question 1:

Let a1,a3, be in harmonic progression with a1=5 and a20=25. The least positive integer n for which an<0 is

[1] 22

[2] 23

[3] 24

[4] 25

Answer & Solution
Option # 4

If a1,a2,a3,. are in harmonic progression, then 1a1,1a2,1a3 are in AP.

First term of AP,1a1=15

20th term of AP,1a20=125

15+19d=125

d=419×25

We have to find the least positive integer n for which an<0

15+(n1)d<0

15+(n1)d<0

15+(n1)>954

n>24.75


Question 2:
The sum of the first 20 term of the sequence 0.7,0.77,0.777,, is

[1] 781(1791020)

[2] 79(991020)

[3] 781(179+1020)

[4] 79(99+1020)

Answer & Solution
Option # 3

We have,

0.7+0.77+0.777+ upto 20 terms

7 (110+11102+111103+upto 20 terms)

79 (910+99102+999103+upto 20 terms)

79 ((1110)+(11100)+(111000)+upto 20 terms) 79 (20 (110+1100+11000+upto 20 terms))

79(20(110(1(110)201110)))

79(2019(1(110)20))

781(179+(110)20)


Question 3:
If (10)9+2(11)1(10)8+3(11)2(10)7++10(11)9=k(10)9, then k is equal to

[1] 12110

[2] 441100

[3] 100

[4] 110

Answer & Solution
Option # 3

We have,

(10)9+2(11)1(10)5+3(11)2(10)7++10(11)9=k(10)9

Dividing by (10)9 on both sides, we get

1+2(1110)+3(1110)2++10(1110)9=k(i)

Multiplying (1110) on both side of above equation we get,

(1110)+2(1110)2+3(1110)3++10(1110)10=(1110)k (ii)

Subtracting (ii) from (i), we get

k(1110)k=1+(1110)+(1110)2++(1110)910(1110)10

k(1(1110))=1((1110)101)(1110)110(1110)10

k(1(1110))=10

k=100


Question 4:
Three positive numbers form an increasing GP. If the middle term of the GP is doubled, then new numbers are in AP. Then, the common ratio of the GP is

[1] 2+3

[2] 3+3

[3] 23

[4] 2+3

Answer & Solution
Option # 4

Let a,ar,ar2 are in GP.

If the middle term of the GP is doubled, then new numbers are in AP.

a,2ar,ar2 are in AP.

4ar=a+ar2

r24r+1=0

r=2±3

since the series is an increasing GP so,

r=2+3


Question 5:
The sum of the integers lying between 1 and 100 (both inclusive) and divisible by 3 or 5 or 7 is

[1] 818

[2] 1828

[3] 2838

[4] 3848

Answer & Solution
Option # 3

Let S3,S5,S7,S15,S35,S21 be the sum of integers divisible by 3,5,7,15,35 and 21 respectively.

Here,

S3=3+6+9++99

S5=5+10+15++100

S7=7+14+21++98

S15=15+30+45++90

S15=35+70

S31=21+42+63+84

So, the required sum is:

=S3+S5+S7S15S35S21

=332(3+99)+202(5+100)+142(7+98)62(15+90)(35+70)42(21+84)

=1683+1050+735315105210

=2838


Question 6:
The maximum value of the sum of the AP 50,48,46,44, is

[1] 650

[2] 450

[3] 558

[4] 648

Answer & Solution
Option # 1

For maximum value of the given sequence to n terms, when the nth term is either zero or the

smallest positive number of the sequence

ie., 50+(n1)(2)=0n=26

Therefore, S26=262(50+0)=26×25=650


Question 7:
If ai>0,i=1,2,3,,50 and a1+a2+a3++a50=50, then the minimum value of 1a1+1a2+1a3+1a50 is equal to

[1] 150

[2] 100

[3] 50

[4] 200

Answer & Solution
Option # 3

We know that in any series

AMHM

So,

AM of first 50 terms =a1+a2+a3++aso50

HM of the first 50 terms =50(1a1+1a2+1a3++1a50)

Therefore, a1+a2+a3++aso5050(1a1+1a2+1a3++1a50)

5050501a1+1a2+1a3++1a50

1a1+1a2+1a3++1a5050

Hence, minimum value of 1a1+1a2+1a3++1a50 is 50


Question 8:
The sum to infinity of the series 1+23+632+1033+1434+ is

[1] 6 

[2] 2

[3] 3

[4] 4

Answer & Solution
Option # 3

S=1+23+632+1033+1434+. (i)

S3=1+13+232+633+1034+. (ii)

Subtracting ( ii ) from (i) we get, 23=1+13+432+433

=43+432(1113)=43+432×32=2

S=3


Question 9:
If xa=yb=zc, where a,b,c are unequal positive numbers and x,y,z are in GP, then a3+c3 is

[1] >2b3

[2] >2c3

[3]  <2b3

[4] <2c3

Answer & Solution
Option # 1

Since xa=yb=zc=λ (say)

Therefore, x=λ1/a,y=λ1/b,z=λ1/c

Now, because x , y , z are in GP

So, y2=zx

λ2/b=λ1/cλ1/a

λ2/b=λ1/c+1/a

2b=1a+1c

Therefore, a, b, and c are in HP

Now, GM >HM

ac>b...(i)

Now, for three numbers a3,b3,c3

AM>GM

a3+c32>(ac)3>b3

Or, a3+c3>2b3


Question 10:
The first two terms of a geometric progression add up to 12. The sum of the third and the fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is

[1] –4

[2] –12

[3] 12

[4] 4

Answer & Solution
Option # 2

Let a , ar, ar2,

a+ar=12(i)

ar2+ar3=48(ii)

dividing (ii) by (i), we have

ar2(1+r)a(r+1)=4

r2=4 if r1

Therefore, r=-2 and a=-12.


Comments

Popular posts from this blog

APTITUDE MCQ LIST

সাধারণ জ্ঞান MCQ LIST