LOGARITHM MCQ LIST

 Question 1:

The value of x satisfying log10(2x+x41)=x(1log105)is:

[1] 35

[2] 40

[3] 41

[4] 43

Answer & Solution
Option # 3

We have,

log10(2x+x41)=x(1log105)

log10(2x+x41)=xlog102=log10(2x)

2x+x41=2xx=41.


Question 2:
If the product of the roots of the equation, x(34)(log2x)2+log2x(54)=2 is 1ab (where a, b N) then the value of (a+b)

[1] 0

[2] 1

[3] 18

[4] 19

Answer & Solution
Option # 4

Take log on both the sides with base 2

(34(log2x)2+log2x54)log2x=12

log2x=y

3y3+4y25y2=0

3y2(y1)+7y(y1)+2(y1)=0

(y1)(3y2+7y+2)=0

(y1)(3y+1)(y+2)=0

y=1 or y=2 or y=13

Therefore, x=2;14;121/3x1x2x3=1163

a+b=19


Question 3:
For 0<a1, find the number of ordered pair (x,y) satisfying the equation loga|x+y|=12 and logayloga|x|=loga24

[1] 0

[2] 1

[3] 2

[4] 4

Answer & Solution
Option # 3

We have loga2|x+y|=12|x+y|=ax+y=±a(1)

Also, log(y|x|)=loga24y=2|x|(2)

If x>0, then x=a3,y=2a3

If x<0, then y=2a,x=a

Therefore, possible ordered pairs =(a3,2a3) and (a,2a)


Question 4:
For N>1, the product 1log2N1logN81log32N1logN128 simplifies to

[1] 37

[2] 37ln2

[3] 35ln2

[4] 521

Answer & Solution
Option # 4

1log2N1logN81log32N1logN128

=ln2lnNlnN3ln25ln2lnNlnN7ln2

 = 521


Question 5:
If p is the smallest value of x satisfying the equation 2x+152x=8 then the value of 4p is equal to

[1] 9

[2] 16

[3] 25

[4] 1

Answer & Solution
Option # 1

22x82x+15=0

(2x3)(2x5)=0

2x=3 or 2x=5

Hence smallest x is obtained by equating 2x=3x=log23

So, p=log23

Hence, 4p=22log23=2log29=9


Question 6:
The sum of two numbers a and b is 18 and their difference is 14. The value of logb a is equal to

[1] -1

[2] 2

[3] 1

[4] 12

Answer & Solution
Option # 1

a+b=18

ab=14

squaring  & subtract, we get 4ab=4ab=1

Hence number are reciprocal of each other logba=1


Question 7:
The value of the expression (log102)3+log108log105+(log105)3 is

[1] rational which is less than 1

[2] rational which is greater than 1

[3] equal to 1

[4] an irrational number

Answer & Solution
Option # 3

log102=a and log105=b

a+b=1;a3+3ab+b3=?

Now (a+b)3=1a3+b3+3ab=1


Question 8:
If x=10+22 and y=1022, then the value of log2(x2+xy+y2), is equal to

[1] 0

[2] 2

[3] 3

[4] 4

Answer & Solution
Option # 3

log2((x+y)2xy)

but x+y=10;xy=2;xy=1024=2

log2(102)=log28=3


Question 9:
The value of 6+log32(132413241324132) is

[1] 1

[2] 2

[3] -4

[4] 4

Answer & Solution
Option # 4

Let 41324132=t

4132t=t

4132t=t2

t2+132t4=0

32t2+t122=0

t=1±1+4×32×1222×32=1±172×32

t=1662,1862

t=832,32 and 32 is rejected

So, 6+log32(132×832)

=6+log32(49)

=6+log32((23)2)=62=4


Question 10:
Suppose that x<0. Which of the following is equal to |2x(x2)2|

[1] x-2

[2] 3x-2

[3] 3x+2

[4] -3x+2

Answer & Solution
Option # 4

y=|2x|x2||=|2x(2x)|=|3x2| as x<0 hence 

Comments

Popular posts from this blog

APTITUDE MCQ LIST

সাধারণ জ্ঞান MCQ LIST